M'X up control.dll

UP_APPO1 - up_control.dll

description
S e
Ao (’\///x 9
A
Q%
\\\ o = -
< * Application note

ASIX s.r.o.

Na Popelce 38/17
150 00 Prague
Czech Repubilic

www.asix.net
support@asix.net

sales@asix.net

ASIX s.r.o0. reserves the right to make changes to this document, the
latest version of which can be found on the Internet.

ASIX s.r.0. renounces responsibility for any damage caused by the use
of ASIX s.r.o0. products.

© Copyright by ASIX s.r.o.

http://www.asix.net
mailto:support@asix.net
mailto:sales@asix.net

Table of Contents

1 up control.dll

1.1 Description

1.2 List of the functions
1.3 Functions description

131
1.3.2
1.3.3
1.3.4
1.35
1.3.6
1.3.7
1.3.8
1.3.9
1.3.10
1.3.11
1.3.12
1.3.13
1.3.14

UP_Prog
UP_DiffProg
UP_Erase
UP_BlankCheck
UP_Verify
UP_Read
UP_ProgState
UP_ProgStateEx
UP_LastErrorCode
UP_Cancel
UP_ProgConfig
UP_SetManualSN
UP_GetProglList
UP_CleanUp

1.4 Constants

1.5 Functions error codes

1.6 UP_ProgState return values
1.7 UP_ProgStateEx Task values

2 Document history

© W W W 0O N N oo o b b b Db

i
o O

e
N =)

=
N

1

up_control.dll

1.1

Description

The up_control.dll enables user to control the UP software
using functions contained in the library. It contains basic
programming functions.

The library have to be in the same directory as the up.exe
file.

First the process have to be configured using
UP_ProgConfig function then any function working with
the selected programmer can be called, it requests the UP
to do the work and returns an error code.

The state of the operation can be checked using
UP_ProgState or UP_ProgStateEx functions.

When finished, the error code of the operation can be
read using UP_LastErrorCode function, the meaning of the
returned error code is the same as the return codes
returned by UP on the commandline, when not finished
the UP_LastErrorCode returns -1.

The library can control up to 8 programmers at once. With
increasing number of the controlled programmers the
computer load will also grow up, which will affect
programming speed.

UP_GetProgList function returns |list of available
programmers, calling of this function clears settings done
by UP_ProgConfig function.

up_control64.dll is 64 bit version of up_control.dll, both of
them are contained in the UP software installation
directory.

1.2

1.3

List of the functions

int _ stdcall UP_Prog(int prog index, bool code,
bool data, bool boot, bool cfg);,

int _ stdcall UP_DiffProg(int prog index, bool c
ode, bool data, bool boot, bool cfg);

int _ stdcall UP_Erase(int prog index, bool code
, bool data, bool boot),

int _ stdcall UP_BlankCheck (int prog index, bool
code, bool data, bool boot, bool cfg);,

int _ stdcall UP_Verify(int prog index, bool cod
e, bool data, bool boot, bool cfg);,

int _ stdcall UP_Read(int prog index, bool code,
bool data, bool boot, bool cfg);,

int _ stdcall UP_ProgState(int prog index, int *

ProgressBarValue) ;

int _ stdcall UP_ProgStateEx(int prog index, int
*MainProgressBar, int *TaskProgressBar, int *Ta
sk) ;

int __ stdcall UP_LastErrorCode (int prog index);
int _ stdcall UP_Cancel (int prog index),

int _ stdcall UP_ProgConfig(int prog index, char
*UP_project, int prog type, int prog SN, char *

NewDataFile, char *EEFile);,;

int _ stdcall UP_SetManualSN(int prog index, boo
1l DefineSN, int SN),

int __ stdcall UP_GetProgList (int prog type, int
*sn list, int count, int *count returned),

int _ stdcall UP_CleanUp (void)

Note: The UP_ProgConfig function expects that the
strings pointed to by UP_project, NewDataFile and
EEFile are ANSI strings.

Functions description

Page 4

1.3.1 UP_Prog

The function asks for programming of the connected
device.

The UP_ProgConfig function have to be called first to
define parameters.

Function definition:

int _ stdcall UP_Prog(int prog_index, bool code, bool data,
bool boot, bool cfg);

Parameters:

prog_index - Index of the selected programmer.

code - When true, it programs code memory.

data - When true, it programs data memory.

boot - When true, it programs boot memory.

cfg - When true, it programs configuration memory.
Return values:

ERR_NONE - The function has been successfully called.
ERR_PROG_BUSY - The programmer is busy.

ERR_UP_MISSING - The library was not able to find
up.exe file.

ERR_WRONG_PROG_INDEX - The programmer index is
out of range.

ERR_NOT_CONFIGURED - The UP_ProgConfig has not
been called first or it has not been successful.

Example:

FuncRes = UP_Prog(0, 1, 1, 1, 1); // With progra
mmer 0 program all available memories.

1.3.2 UP _DiffProg

The function asks for differential programming of the
connected device.

The UP_ProgConfig function have to be called first to
define parameters.

Function definition:

int _ stdcall UP_DiffProg(int prog_index, bool code, bool
data, bool boot, bool cfg);

Parameters:

prog_index - Index of the selected programmer.

code - When true, it programs code memory.

data - When true, it programs data memory.

boot - When true, it programs boot memory.

cfg - When true, it programs configuration memory.
Return values:

ERR_NONE - The function has been successfully called.
ERR_PROG_BUSY - The programmer is busy.

ERR_UP_MISSING - The library was not able to find
up.exe file.

ERR_WRONG_PROG_INDEX - The programmer index is
out of range.

ERR_NOT_CONFIGURED - The UP_ProgConfig has not
been called first or it has not been successful.

Example:

FuncRes = UP_DiffProg(0, 1, 1, 1, 1); // With pr
ogrammer 0 program all available memories.

Page 5

1.3.3 UP_Erase

The function asks for erasing of the connected device.

The UP_ProgConfig function have to be called first to
define parameters.

Function definition:

int _ stdcall UP_Erase(int prog_index, bool code, bool
data, bool boot);

Parameters:

prog_index - Index of the selected programmer.
code - When true, it erases code memory.

data - When true, it erases data memory.

boot - When true, it erases boot memory.

Return values:

ERR_NONE - The function has been successfully called.
ERR_PROG_BUSY - The programmer is busy.

ERR_UP_MISSING - The library was not able to find
up.exe file.

ERR_WRONG_PROG_INDEX - The programmer index is
out of range.

ERR_NOT_CONFIGURED - The UP_ProgConfig has not
been called first or it has not been successful.

Example:

FuncRes = UP_Erase(0, 1, 1, 1); // With programm
er 0 erase all available memories.

1.3.4 UP_BlankCheck

The function asks for blank check of the connected
device.

The UP_ProgConfig function have to be called first to

define parameters.

Function definition:

int _ stdcall UP_BlankCheck(int prog_index, bool code,
bool data, bool boot, bool cfg);

Parameters:

prog_index - Index of the selected programmer.

code - When true, it does blank check of code memory.
data - When true, it does blank check of data memory.
boot - When true, it does blank check of boot memory.

cfg - When true, it does blank check of configuration
memory.

Return values:

ERR_NONE - The function has been successfully called.
ERR_PROG_BUSY - The programmer is busy.

ERR_UP_MISSING - The library was not able to find
up.exe file.

ERR_WRONG_PROG_INDEX - The programmer index is
out of range.

ERR_NOT_CONFIGURED - The UP_ProgConfig has not
been called first or it has not been successful.

Example:

FuncRes = UP_DiffProg(l1, 1, 0, 0, 0); // With pr
ogrammer 1 blank check code memory.

1.3.5 UP Verity

The function asks for verification of the connected
device.

The UP_ProgConfig function have to be called first to
define parameters.

Function definition:

Page 6

int _ stdcall UP_Verify(int prog index, bool code, bool
data, bool boot, bool cfg);

Parameters:

prog_index - Index of the selected programmer.

code - When true, it verifies code memory.

data - When true, it verifies data memory.

boot - When true, it verifies boot memory.

cfg - When true, it verifies configuration memory.
Return values:

ERR_NONE - The function has been successfully called.
ERR_PROG_BUSY - The programmer is busy.

ERR_UP_MISSING - The library was not able to find
up.exe file.

ERR_WRONG_PROG_INDEX - The programmer index is
out of range.

ERR_NOT_CONFIGURED - The UP_ProgConfig has not
been called first or it has not been successful.

Example:

FuncRes = UP_Verify(2, 1, 1, 0, 0); // With prog
rammer 2 verify code and data memories.

1.3.6 UP Read

The function asks for reading of the connected device.

The UP_ProgConfig function have to be called first to
define parameters.

Function definition:

int __stdcall UP_Read(int prog_index, bool code, bool
data, bool boot, bool cfg);

Parameters:

prog_index - Index of the selected programmer.
code - When true, it verifies code memory.
data - When true, it verifies data memory.
boot - When true, it verifies boot memory.
cfg - When true, it verifies configuration memory.

Return values:

ERR_NONE - The function has been successfully called.
ERR_PROG_BUSY - The programmer is busy.

ERR_UP_MISSING - The library was not able to find
up.exe file.

ERR_WRONG_PROG_INDEX - The programmer index is
out of range.

ERR_NOT_CONFIGURED - The UP_ProgConfig has not
been called first or it has not been successful.

Example:

FuncRes = UP_Read(0, 1, 1, 1, 1); // With progra
mmer 0 read all available memories.

1.3.7 UP_ProgState

The function returns state of the selected programmer.
Function definition:

int __stdcall UP_ProgState(int prog_index, int
*ProgressBarValue);

Parameters:
prog_index - Index of the selected programmer.

ProgressBarValue - Returns value of UP software main
ProgressBar.

Return values:

PROG_STATE_DONE - The last operation has beed

Page 7

finished.
PROG_STATE_BUSY - The programmer is busy.

PROG_STATE_NOT_USED - The programmer has not
been used yet.

PROG_STATE_WRONG_INDEX - The programmer index
is out of range.

Example:

int ProgressBar,
FuncRes = UP_ProgState (0, &ProgressBar); // With
programmer 0 read all available memories.

1.3.8 UP_ProgStateEx

The function returns state of the selected programmer
including actual task and task ProgressBar.

Function definition:

int __stdcall UP_ProgStateEx(int prog_index, int
*MainProgressBar, int *TaskProgressBar, int *Task);

Parameters:
prog_index - Index of the selected programmer.

MainProgressBar - Returns value of UP software main
ProgressBar.

TaskProgressBar - Returns value of task ProgressBar.

Task - Returns an identification of the actual task in
accordance with constants. In the lowest byte (byte 0) of
the Task variable there is the actual task, in the second
byte (byte 1) there is a memory identification. E.g. when
the actual task is the code memory programming, then in
the Task variable there is: TASK MEM _CODE |
TASK_FUNC_PROG

Return values:

PROG_STATE_DONE - The last operation has beed
finished.

PROG_STATE_BUSY - The programmer is busy.

PROG_STATE_NOT_USED - The programmer has not
been used yet.

PROG_STATE_WRONG_INDEX - The programmer index
is out of range.

Example:

int ProgressBar,

int TaskProgressBar,

int Task;

FuncRes = UP_ProgStateEx (0, &ProgressBar, &TaskP
rogressBar, &Task); // Read values of ProgressBa
rs and the Task identification

1.3.9 UP_LastErrorCode

The function returns error code of the last operation
finished with the programmer. The returned value is the
same as UP software returns on the commandline.

Function definition:

int _stdcall UP_LastErrorCode(int prog_index);
Parameters:
prog_index - Index of the selected programmer.

Return values: The returned value is the same as UP
software returns on the commandline. For more
information see programmer manual chapter Program
Return Codes. When not finished it returns -1.

Example:

FuncRes = UP_LastErrorCode (0); // Read the last
error code of programmer 0.

1.3.10 UP_Cancel

The function cancels the task which is being executed by
the selected programmer, same as the Cancel button in
the UP software.

Page 8

Function definition:

int __stdcall UP_Cancel(int prog_index);
Parameters:
prog_index - Index of the selected programmer.

Return values:

ERR_NONE - The function has been successfully called.
ERR_NOT_WORKING - Programmer does nothing.

ERR_WRONG_PROG_INDEX - The programmer index is
out of range.

Example:

FuncRes = UP_Cancel (0); // Cancel the task of pr
ogrammer 0.

1.3.11 UP_ProgConfig

The function configures parameters for following
operations. This is the first function which should be
called.

Function definition:

int __ stdcall UP_ProgConfig(int prog_index, char
*UP_project, int prog type, int prog SN, char
*NewDataFile, char *EEFile);

Parameters:
prog_index - Index of the selected programmer.
UP_project - Selects ppr project file of the UP software.

prog_type - Selects programmer in accordance with
constants.

prog_ SN - Programmer serial number, when it is 0, the
project file defined value is used.

NewDataFile - Sets data file which replaces the one
defined in the project, same as UP software /df
commandline parameter.

EEFile - Sets data file for data memory which replaces
the one defined in the project file, e.g. for AVR. It does the
same as UP software /e commandline parameter.

Return values:

ERR_NONE - The function has been successfully called.
ERR_PROG_BUSY - The programmer is busy.

ERR_UP_MISSING - The library was not able to find
up.exe file.

ERR_WRONG_PROG_INDEX - The programmer index is
out of range.

ERR_NOT_CONFIGURED - The UP_ProgConfig has not
been called first or it has not been successful.

ERR_FILE_DOES_NOT_EXIST - The selected project file
does not exist.

Example:

char ppr path[] ="C:\\projects\
\PIC18F67J10.PPR";

char file path[] =""; // data files from ppr
FuncRes = UP_ProgConfig (0, ppr_path, SET PROG_FR
OM PROJECT, 0, file path, file path);

1.3.12 UP_SetManualSN

The function sets manual SN. It is required when the use
of the manual SN is defined in the ppr file.

Function definition:

int __stdcall UP_SetManualSN(int prog_index, bool
DefineSN, int SN);

Parameters:
prog_index - Index of the selected programmer.

DefineSN - If true, the manual SN will be sent to UP. By
default it is false.

SN - Defines the SN itself.

Page 9

Return values:

ERR_NONE - The function has been successfully called.
ERR_PROG_BUSY - The programmer is busy.

ERR_WRONG_PROG_INDEX - The programmer index is
out of range.

Example:
FuncRes = UP_SetManualSN(0, 1, 0x1234);

1.3.13 UP_GetProgList

The function returns list of available programmers, it
returns the list only when no programmer is being used
by the library. Calling of this function clears settings done
by the UP_ProgConfig function.

Function definition:

int _ stdcall UP_GetProgList(int prog_type, int *sn_list, int
count, int *count_returned);

Parameters:

prog_type - Selects programmer type in accordance with
constants.

sn_list - Array of integer, which returns the list of the
serial numbers of the available FORTE programmers. The
serial nubers are returned as 24bit values, same as they
are listed in the UP software.

count - Variable defining the number of the serial
numbers to be read.

count_returned - Variable returning number of serial
numbers, which have been returned in sn_list.

Return values:

ERR_NONE - The function has been successfully
executed.

ERR_PROG_BUSY - A programmer is busy.

1.4

ERR_DRIVER - The programmer driver error.

In sn_list the function returns Ilist of available
programmers and the count of the returned values is
returned in count_returned.

Example:

int prog list[20];

int prog list count;

int FuncRes;,

FuncRes=UP_GetProgList (PROG_FORTE, prog list, 20
, &prog list count);

1.3.14 UP CleanUp

The function will end up the work of the library. This
function has to be called before calling the FreeLibrary
function.

Function definition:

int _stdcall UP_CleanUp(void);

Return values:

ERR_NONE - The function has been succesfully
executed.

ERR_PROG_BUSY - A programmer is busy.

Constants

SET PROG_FROM_PROJECT=0;
SET PROG_PRESTO=1;
SET PROG_FORTE=2;

PROG_PRESTO=1;,
PROG_FORTE=2;

Page 10

1.5

1.6

1.7

Functions error codes

ERR_NONE=0;
ERR_PROG_BUSY=1;
ERR_UP_MISSING=2;
ERR_WRONG_PROG_INDEX=3;
ERR_NOT_CONFIGURED=4;
ERR_FILE DOES_NOT EXIST=5;
ERR_DRIVER=6;
ERR_NOT_WORKING=7;

UP_ProgState return
values

PROG_STATE_DONE=0;
PROG_STATE BUSY=1;,
PROG_STATE_NOT_USED=2;
PROG_STATE_WRONG_INDEX=3;

UP_ProgStateEx Task
values

TASK _MEM MASK=0xFF00;
TASK FUNC MASK=0xFF;

TASK_MEM_NONE=0;
TASK_MEM_CODE=0x100;
TASK_MEM DATA=0x200;
TASK_MEM_BOOT=0x300;
TASK_MEM_CFG=0x400;
TASK MEM_ID=0x500;
TASK_MEM_OTHER=0xFF00;

TASK_FUNC_NONE=0x00;
TASK_FUNC_READ=0x01;
TASK_FUNC_BLANK CHECK=0x02;
TASK_FUNC_VERIFY=0x03;
TASK_FUNC_VERIFY1=0x04;
TASK_FUNC_VERIFY2=0x05;

TASK_FUNC_PROG=0x06;
TASK_FUNC_ERASE=0x07;

TASK_FUNC_ERASE_ALL=0x08;
TASK_FUNC_DIFF_PROG=0x09;
TASK_FUNC_FILE_LOAD=0x0A;

TASK_FUNC_OTHER=0xFF;

Page 11

2

Document history

Document
revision

Modifications made

2019-09-19

Document created.

2020-10-08

Added UP_GetProgList function and constants.

2021-05-21

The number of supported programmers has been
changed.

2021-08-20

Added UP_CleanUp function.

2024-09-17

Added UP_ProgStateEx function.

2024-11-06

Added UP_Cancel function.

Page 12

	Table of Contents
	1 up_control.dll
	1.1 Description
	1.2 List of the functions
	1.3 Functions description
	1.3.1 UP_Prog
	1.3.2 UP_DiffProg
	1.3.3 UP_Erase
	1.3.4 UP_BlankCheck
	1.3.5 UP_Verify
	1.3.6 UP_Read
	1.3.7 UP_ProgState
	1.3.8 UP_ProgStateEx
	1.3.9 UP_LastErrorCode
	1.3.10 UP_Cancel
	1.3.11 UP_ProgConfig
	1.3.12 UP_SetManualSN
	1.3.13 UP_GetProgList
	1.3.14 UP_CleanUp

	1.4 Constants
	1.5 Functions error codes
	1.6 UP_ProgState return values
	1.7 UP_ProgStateEx Task values

	2 Document history

